Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2962645.v1

ABSTRACT

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups six months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.19.22273864

ABSTRACT

Background COVID-19 has been a major public health threat for the past two years, with disproportionate effects on the elderly, immunocompromised, and pregnant women. While much has been done in delineating immune dysfunctions and pathogenesis in the former two groups, less is known about the disease's progression in expectant women and children born to them. To address this knowledge gap, we profiled the immune responses in maternal and child sera as well as breast milk in terms of antibody and cytokine expression and performed histopathological studies on placentae obtained from mothers convalescent from antenatal COVID-19. Methods and findings A total of 17 mother-child dyads (8 cases of antenatal COVID-19 and 9 healthy unrelated controls; 34 individuals in total) were recruited to the Gestational Immunity For Transfer (GIFT) study. Maternal and infant sera, and breast milk samples were collected over the first year of life. All samples were analyzed for IgG and IgA against whole SARS-CoV-2 spike protein, the spike receptor-binding domain (RBD), and previously reported immunodominant epitopes, with conventional ELISA approaches. Cytokine levels were quantified in maternal sera using multiplex microbead-based Luminex arrays. The placentae were examined microscopically. We found high levels of virus-specific IgG in convalescent mothers and similarly elevated titers in newborn children. Virus-specific IgG in infant circulation waned within 3-6 months of life. Virus-specific IgA levels were variable among convalescent individuals' sera and breast milk. Convalescent mothers also showed a blood cytokine signature indicative of a persistent pro-inflammatory state. Four placentae presented signs of acute inflammation marked by neutrophil infiltration even though >50 days had elapsed between virus clearance and delivery. Administration of a single dose of BNT162b2 mRNA vaccine to mothers convalescent from antenatal COVID-19 increased virus-specific IgG and IgA titers in breast milk. Conclusions Antenatal SARS-CoV-2 infection led to high plasma titres of virus-specific antibodies in infants postnatally. However, this was not reflected in milk; milk-borne antibody levels varied widely. Additionally, placentae from COVID-19 positive mothers exhibited signs of acute inflammation with neutrophilic involvement, particularly in the subchorionic region. Virus neutralisation by plasma was not uniformly achieved, and the presence of antibodies targeting known immunodominant epitopes did not assure neutralisation. Antibody transfer ratios and the decay of transplacentally transferred virus-specific antibodies in neonatal circulation resembled that for other pathogens. Convalescent mothers showed signs of chronic inflammation marked by persistently elevated IL17RA levels in their blood. A single dose of the Pfizer BNT162b2 mRNA vaccine provided significant boosts to milk-borne virus-specific antibodies, highlighting the importance of receiving the vaccine even after natural infection with the added benefit of enhanced passive immunity. The study is registered at clinicaltrials.gov under the identifier NCT04802278.


Subject(s)
Breast Neoplasms , COVID-19 , Inflammation
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.06.22271809

ABSTRACT

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced neutralizing antibody responses for key variants in an Asian volunteer cohort. We demonstrate a reduction in neutralizing antibody titres across all groups six months post-vaccination and show a marked reduction in the serological binding and neutralizing response targeting Omicron compared to other viral variants. We also highlight the increase in cross-protective neutralizing antibody responses against Omicron induced by a third dose (booster) of vaccine. These data illustrate how key virological factors such as immune escape mutation combined with host factors such as age and sex of the vaccinated individuals influence the strength and duration of cross-protective serological immunity for COVID-19.


Subject(s)
COVID-19
7.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3741264

ABSTRACT

Background: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. Methods: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth’s logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. Findings: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades ‘O’ were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. Interpretation: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.Funding Statement: This study was funded by grants from the Singapore National Medical Research Council (COVID19RF- 001, COVID19RF2-0001, COVID19RF-007, and COVID19RF-60) and Biomedical Research Council (project number H20/04/g1/006).Declaration of Interests: No conflicts of interest declared.Ethics Approval Statement: The epidemiological investigation was conducted under the Infectious Diseases Act (Singapore). Study protocols were approved by ethics committees of the National Healthcare Group and SingHealth. Written informed consent was obtained from participants for clinical data and biological sample collection as part of the PROTECT study (2012/00917; 2018/3045). A waiver of informed consent for retrospective data collection only was granted for individuals admitted to the National Centre of Infectious Diseases (2020/01122). Healthy donor samples were collected under study numbers 2017/2806 and NUS IRB 04-140.


Subject(s)
COVID-19 , Hypoxia , Inflammation , Vitamin B 6 Deficiency
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.16.20232835

ABSTRACT

The rapid rise of coronavirus disease 2019 patients who suffer from vascular events after their initial recovery is expected to lead to a worldwide shift in disease burden. We aim to investigate the impact of COVID-19 on the pathophysiological state of blood vessels in convalescent patients. Here, convalescent COVID-19 patients with or without preexisting conditions (i.e. hypertension, diabetes, hyperlipidemia) were compared to non-COVID-19 patients with matched cardiovascular risk factors or healthy participants. Convalescent patients had elevated circulating endothelial cells (CECs), and those with underlying cardiovascular risk had more pronounced endothelial activation hallmarks (ICAM1, P-selectin or CX3CL1) expressed by CECs. Multiplex microbead-based immunoassays revealed some levels of cytokine production sustained from acute infection to recovery phase. Several proinflammatory and activated T lymphocyte-associated cytokines correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Finally, the activation markers detected on CECs mapped to the counter receptors (i.e. ITGAL, SELPLG, and CX3CR1) found primarily on CD8+ T cells and natural killer cells, suggesting that activated endothelial cells could be targeted by cytotoxic effector cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=69 SRC="FIGDIR/small/20232835v1_ufig1.gif" ALT="Figure 1"> View larger version (19K): org.highwire.dtl.DTLVardef@11f094borg.highwire.dtl.DTLVardef@9b458forg.highwire.dtl.DTLVardef@1f3bceeorg.highwire.dtl.DTLVardef@f8d229_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
Acute Disease , Diabetes Mellitus , Hypertension , COVID-19 , Hyperlipidemias
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3713507

ABSTRACT

Early detection of infections is crucial to limit the spread of coronavirus 2019 disease (COVID-19). Here, we developed a flow cytometry-based assay to detect SARS-CoV-2 Spike protein (S protein) antibodies in COVID-19 patients. The assay detected specific IgM and IgG in COVID-19 patients and also the acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response was significantly higher at a later stage of the infection. Furthermore, asymptomatic COVID-19 patients also developed specific IgM and IgG, with IgG1 as the most dominant subclass. Although the antibody levels were lower in asymptomatic infections, the assay was highly sensitive and detected 97% of asymptomatic infections. These findings demonstrated that the assay could be used for serological analysis of symptomatic patients, and also as a sensitive tool to detect asymptomatic infections, which may go undetected.Funding: Biomedical Research Council (BMRC), the A*ccelerate GAP-funded project (ACCL/19-GAP064-R20H-H) from Agency of Science, Technology and Research (A*STAR), and National Medical Research Council (NMRC) COVID-19 Research fund (COVID19RF-001, COVID-19RF-007, COVID-19RF-60).Conflict of Interest: The authors declare no competing interests.Ethical Approval: The study design and protocols for COVID-19, recovered SARS and seasonal human CoV patient cohorts were approved by National Healthcare Group (NHG) Domain Specific Review Board (DSRB) and performed, following ethical guidelines in the approved studies 2012/00917, 2020/00091 and 2020/00076 respectively. Healthy donor samples were collected in accordance with approved studies 2017/2806 and NUS IRB 04-140. Written informed consent was obtained from participants in accordance with the Declaration of Helsinki for Human Research.


Subject(s)
COVID-19
10.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3707283

ABSTRACT

The impact of ORF8 382-nucleotide deletion (Δ382) on the cellular host immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains undefined. Here, RNA-sequencing was performed to elucidate whole blood transcriptomic profiles and identify contrasting immune signatures between patients infected with wildtype or Δ382 variant of SARS-CoV-2. Interestingly, immune landscape of Δ382 SARS-CoV-2 infected patients featured an increased T cell response, evidenced by enrichment of genes related to T cell functionality that correlated with up-regulation of T cell-associated cytokines, under-expression of neutrophil activation-associated genes, lowered systemic inflammation and effective antibody response. At the molecular level, eukaryotic initiation factor 2 signaling was found to be up-regulated in patients bearing Δ382 and its associated genes were correlated with systemic levels of T cell-associated and pro-inflammatory cytokines. These key insights could serve as an important foundation for future human challenge vaccine studies and highlights the prophylactic potential of Δ382 as vaccine candidate.Funding: The study was supported by core and COVID-19 (project number H20/04/g1/006) research grants provided to Singapore Immunology Network by the Biomedical Research Council (BMRC) and A*ccelerate GAP-funded project (ACCL/20-GAP001C20H-E) from the Singapore Ministry of Health’s National Medical Research Council. This study was also funded by the National Medical Research Council (NMRC) COVID-19 Research fund (COVID19RF-001). SIgN Immunomonitoring Platform is supported by a BMRC IAF 311006 grant and BMRC transition funds #H16/99/b0/011. ATR is supported by the Singapore International Graduate Award (SINGA), A*STAR. Conflict of Interest: The authors declare no conflict of interest.Ethical Approval: The study design and protocols for the COVID-19 PROTECT study group were evaluated by National Healthcare Group (NHG) Domain Specific Review Board (DSRB) and approved under study number 2012/00917. Collection of healthy donor samples was approved by SingHealth Centralised Institutional Review Board (CIRB) under study number 2017/2806 and NUS IRB 04-140. Written informed consent was obtained from participants in accordance with the Declaration of Helsinki for Human Research.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.08.332544

ABSTRACT

The emergence of a SARS-CoV-2 variant with a point mutation in the spike (S) protein, D614G, has taken precedence over the original Wuhan isolate by May 2020. With an increased infection and transmission rate, it is imperative to determine whether antibodies induced against the D614 isolate may cross-neutralize against the G614 variant. In this report, profiling of the anti-SARS-CoV-2 humoral immunity reveals similar neutralization profiles against both S protein variants, albeit waning neutralizing antibody capacity at the later phase of infection. These findings provide further insights towards the validity of current immune-based interventions.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL